skip to main content


Search for: All records

Creators/Authors contains: "Allgaier, Markus"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We report results of very-long-baseline interferometric imaging using distributed single photons. We demonstrate source autocorrelation reconstruction, and increased signal-to-noise ratio per detected coincidence compared to using classical states as phase reference.

     
    more » « less
  2. Hemmer, Philip R. ; Migdall, Alan L. (Ed.)
    Recent proposals suggest that distributed single photons serving as a ‘non-local oscillator’ can outperform coherent states as a phase reference for long-baseline interferometric imaging of weak sources [1,2]. Such nonlocal quantum states distributed between telescopes can, in-principle, surpass the limitations of conventional interferometric-based astronomical imaging approaches for very-long baselines such as: signal-to-noise, shot noise, signal loss, and faintness of the imaged objects. Here we demonstrate in a table-top experiment, interference between a nonlocal oscillator generated by equal-path splitting of an idler photon from a pulsed, separable, parametric down conversion process and a spectrally single-mode, quasi-thermal source. We compare the single-photon nonlocal oscillator to a more conventional local oscillator with uncertain photon number. Both methods enabled reconstruction of the source’s Gaussian spatial distribution by measurement of the interference visibility as a function of baseline separation and then applying the van Cittert-Zernike theorem [3,4]. In both cases, good qualitative agreement was found with the reconstructed source width and the known source width as measured using a camera. We also report an increase of signal-to-noise per ‘faux’ stellar photon detected when heralding the idler photon. 1593 heralded (non-local oscillator) detection events led to a maximum visibility of ~17% compared to the 10412 unheralded (classical local oscillator) detection events, which gave rise to a maximum visibility of ~10% – the first instance of quantum-enhanced sensing in this context. 
    more » « less
  3. We present a theoretical proof that the “quantum enhancement” of two-photon absorption, thought to be a means to improve molecular spectroscopy and imaging, is tightly bounded by the physics of photonic entanglement and nonlinear response.

     
    more » « less
  4. Recent proposals suggest that a distributed single-photon would outperform weak coherent or thermal states as a phase reference for long-baseline interferometry of dim sources. We demonstrate experimental results toward confirming this prediction.

     
    more » « less
  5. The theory of sum-frequency generation (SFG) as a two-photon measurement process is used to infer the role of two-photon entanglement in this process, and an experimental setup and preliminary data are presented as a way towards quantifying the dependence of SFG on entanglement.

     
    more » « less
  6. Controlling the temporal mode shape of quantum light pulses has wide ranging application to quantum information science and technology. Techniques have been developed to control the bandwidth, allow shifting in the time and frequency domains, and perform mode-selective beam-splitter-like transformations. However, there is no present scheme to perform targeted multimode unitary transformations on temporal modes. Here we present a practical approach to realize general transformations for temporal modes. We show theoretically that any unitary transformation on temporal modes can be performed using a series of phase operations in the time and frequency domains. Numerical simulations show that several key transformations on temporal modes can be performed with greater than 95% fidelity using experimentally feasible specifications.

     
    more » « less